Using Eigenvalue Derivatives for Edge Detection in DT-MRI Data
نویسندگان
چکیده
This paper introduces eigenvalue derivatives as a fundamental tool to discern the different types of edges present in matrix-valued images. It reviews basic results from perturbation theory, which allow one to compute such derivatives, and shows how they can be used to obtain novel edge detectors for matrix-valued images. It is demonstrated that previous methods for edge detection in matrix-valued images are simplified by considering them in terms of eigenvalue derivatives. Moreover, eigenvalue derivatives are used to analyze and refine the recently proposed Log-Euclidean edge detector. Application examples focus on data from diffusion tensor magnetic resonance imaging (DT-MRI).
منابع مشابه
Comparison of derivative-based methods by normalized standard deviation approach for edge detection of gravity anomalies
This paper describes the application of the so-called normalized standard deviation (NSTD) method to detect edges of gravity anomalies. Using derivative-based methods enhances the anomaly edges, leading to significant improvement of the interpretation of the geological features. There are many methods for enhancing the edges, most of which are high-pass filters based on the horizontal or vertic...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملEdge Detection with Hessian Matrix Property Based on Wavelet Transform
In this paper, we present an edge detection method based on wavelet transform and Hessian matrix of image at each pixel. Many methods which based on wavelet transform, use wavelet transform to approximate the gradient of image and detect edges by searching the modulus maximum of gradient vectors. In our scheme, we use wavelet transform to approximate Hessian matrix of image at each pixel, too. ...
متن کاملAnalysis of Natural Frequencies for a Laminated Composite Plate with Piezoelectric Patches using the First and Second Eigenvalue Derivatives
In this paper, the first and second order approximations of Taylor expansion are used for calculating the change of each natural frequency by modifying an arbitrary parameter of a system with a known amount and based on this approximation, the inverse eigenvalue problem is transformed to a solvable algebraic equation. The finite element formulation, based on the classical laminated plate theory...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008